Predicted highly expressed genes of diverse prokaryotic genomes.
نویسندگان
چکیده
Our approach in predicting gene expression levels relates to codon usage differences among gene classes. In prokaryotic genomes, genes that deviate strongly in codon usage from the average gene but are sufficiently similar in codon usage to ribosomal protein genes, to translation and transcription processing factors, and to chaperone-degradation proteins are predicted highly expressed (PHX). By these criteria, PHX genes in most prokaryotic genomes include those encoding ribosomal proteins, translation and transcription processing factors, and chaperone proteins and genes of principal energy metabolism. In particular, for the fast-growing species Escherichia coli, Vibrio cholerae, Bacillus subtilis, and Haemophilus influenzae, major glycolysis and tricarboxylic acid cycle genes are PHX. In Synechocystis, prime genes of photosynthesis are PHX, and in methanogens, PHX genes include those essential for methanogenesis. Overall, the three protein families-ribosomal proteins, protein synthesis factors, and chaperone complexes-are needed at many stages of the life cycle, and apparently bacteria have evolved codon usage to maintain appropriate growth, stability, and plasticity. New interpretations of the capacity of Deinococcus radiodurans for resistance to high doses of ionizing radiation is based on an excess of PHX chaperone-degradation genes and detoxification genes. Expression levels of selected classes of genes, including those for flagella, electron transport, detoxification, histidine kinases, and others, are analyzed. Flagellar PHX genes are conspicuous among spirochete genomes. PHX genes are positively correlated with strong Shine-Dalgarno signal sequences. Specific regulatory proteins, e.g., two-component sensor proteins, are rarely PHX. Genes involved in pathways for the synthesis of vitamins record low predicted expression levels. Several distinctive PHX genes of the available complete prokaryotic genomes are highlighted. Relationships of PHX genes with stoichiometry, multifunctionality, and operon structures are discussed. Our methodology may be used complementary to experimental expression analysis.
منابع مشابه
HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection
The highly expressed genes database (HEG-DB) is a genomic database that includes the prediction of which genes are highly expressed in prokaryotic complete genomes under strong translational selection. The current version of the database contains general features for almost 200 genomes under translational selection, including the correspondence analysis of the relative synonymous codon usage fo...
متن کاملAnalysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes.
Shine-Dalgarno (SD) sequence has been considered as one of the common features of 5' end untranslated region (5'UTR) of prokaryotic transcripts. However, more leaderless bacteria and archaea mRNAs are being increasingly reported in recent years. To understand the distribution of SD-led genes and non-SD-led genes, we have analyzed 162 completed prokaryotic genomes leading to various new conclusi...
متن کاملDetecting uber-operons in prokaryotic genomes
We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological ...
متن کاملComparative Analysis of Predicted Gene Expression among Crenarchaeal Genomes
Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes...
متن کاملCharacterizations of highly expressed genes of four fast-growing bacteria.
Predicted highly expressed (PHX) genes are characterized for the completely sequenced genomes of the four fast-growing bacteria Escherichia coli, Haemophilus influenzae, Vibrio cholerae, and Bacillus subtilis. Our approach to ascertaining gene expression levels relates to codon usage differences among certain gene classes: the collection of all genes (average gene), the ensemble of ribosomal pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 18 شماره
صفحات -
تاریخ انتشار 2000